

–––

Written by Erwin Wiegman

Date 21-12-2023
Version 1.5

Installing Datawarehouse

reporting for

ROGER365.io

2

Index
High-level overview of the steps ... 3

Install or update SQL schema with dacpac file .. 4

Install the SQL connector for logic apps .. 7

Import logic app to your azure tenant .. 11

Installing a new version of the database ... 14

No custom object in the reporting database .. 14

With custom object in the reporting database ... 14

Database explanation .. 16

Social messsaging schema ... 18

Contact center schema .. 19

3

High-level overview of the steps

1) Create an Azure SQL database

2) Deploy reporting API schema to database

3) Install the SQL connector for logic apps

4) Install the Logic Apps

4

Install or update SQL schema with dacpac file

First create an Azure SQL database and connect to it with Azure data studio. This can be done from

the azure portal on the Azure SQL server.

In Azure Data Studio the SQL Server Dacpac extension must be installed (one time). The extension

menu item can be found on the left menu. Type dacpac in the search box, and install the extension.

Connect you database to Azure Data Studio in the server section and open your reporting database

https://docs.microsoft.com/en-us/azure/azure-sql/database/single-database-create-quickstart?tabs=azure-portal

5

Choose the Data-tier Application wizard and in the wizard pop-up choose deploy a data-tier

application .dacpac file to an instance of SQL server

Point the wizard to the dacpac file. Which will create the database schema (or update it, because this

is the same procedure).

The loading of the DACPAC can take some while. The process is checking the current database and

the new version of the database and will display the changes that will be made after it is finished

processing.

6

Go the through the wizard and deploy the dacpac file. After is has been deployed successful, you can

refresh your database connection and all changes should be applied.

7

Install the SQL connector for logic apps
Before you start you need the location where you want the connector installed (for example

westeurope) and you need the GUID for your azure subscription (this can be found under the

subscriptions in azure).

Create a resource group in your Azure tenant and choose to deploy a custom template. (type deploy

in the azure search box).

Choose build your own template in the editor

8

Choose load file and choose the logic app template and click save.

Choose the template.json from the API connection SQL folder (provided with the ZIP file)

Save the template to get the deployment started

9

Only edit the Subscriptionid with your subscriptionid and press the review+create button (and

afterwards the create button to create the resource).

After you deploy the connector, edit the connector and add the datawarehouseDB credentials

(database you created earlier in which the dacpac file has been deployed) to the API settings.

10

Item Description

SQL servername Your Azure SQL FQDN name in following syntax
<<sqlservername>>.database.windows.net

SQL
databasename

Your database name on the SQL server in which the schema is loaded

Authentication
Type

is left empty

Username Username to access the database (minimum of read/write permissions +
execute stored procedure

Password Password for user

11

Import logic app to your azure tenant

First get the Resource Id from the SQL API created earlier. This must be used as an input for the logic

apps

You can use the resource group created earlier. Choose to deploy a custom template. (type deploy in

the azure search box).

Choose build your own template in the editor

12

Choose load file and choose the logic app template and click save.

Use the connection id from the SQL connector (on the properties page of the resource saved earlier)

and use this as the Connections_sql_externalid value.

13

Do this import for all logic app templates provided

After you have imported the logic apps. They should be edited to provide the right type of API key to

get the data from the ROGER365.io platform. The value of the key can be stored in the parameters

on the logic app.

The type of key can be found in the default Value description. This should be overwritten by the

actual key. The key can be created in the ROGER365.io portal.

14

Installing a new version of the database
New features and bugfixes will be added to the solutions over time. So the database has to be

updated. There are two scenarios for updating the database and it depends on your situation which

one you have to use to update the database. Before updating the database always make sure you

have a recent backup.

No custom object in the reporting database
If there are no custom object added, like views then the normal procedure can be used (same as how

the initial database is deployed as previously descripted in this document.

With custom object in the reporting database
When there a custom objects added to the reporting database, the normal update doesn’t work,

because this update would remove all the custom object created. In this case we have to do a

schema compare in Azure Data Studio and unselect the deleting of the object.

For this the extension SQL Server Schema Compare should be installed in Azure data studio. After

installing the extension you can right click on the database and select the schema compare option.

Select the new dacpac file on the source and the reporting database as the target and click the

compare button.

After some time the differences between the dacpac file and the running database is shown. For all

the custom object in the database which should NOT be deleted, the check mark in the include

column should be off.

15

When you deselected all the custom objects the changes can be applied to the reporting database

with the apply button at the top.

16

Database explanation
At the time of writing the reporting database has the following tables:

Table Description

R365_CallCenterAgents Contact center Agent information is stored in this table.
This also includes the AzureAd ObjectId

R365_CallCenterAgentsEventLog Log of events from the contact center agents

R365_CallCenterAgentsWorkEntries Information stored about the after worktime of the
contact center agents.

R365_CallCenterCalls This is the primary table of the reporting solution in
which the information is stored about the call center calls

R365_CallCenterCallStreamChanges Information about audio stream changes received from
the teams platform. Can be used to determine how long
a call has been put on hold.

R365_CallCenterExecutionResults The execution results from a contact center call

R365_CallCenterQueues The contact center queues which are configured

R365_CallCenterRequests Logs the Hunt requests. Every time a call enters a queue,
an entry in this table is created and used for determining
the agents to hunt.

R365_Conversations This is the primary table of the reporting solution in
which the information is stored about the closed
conversations

R365_ConversationsContacts Contacts which we active part on the conversation. If
know by the CRM replicators, the CRM name is also
shown. The items shown here, are the items which are
picked in the conversation itself (If there are multiple
CRM results).

R365_ConversationsCrmResultsBulk All CRM results that apply to the conversation. These also
include the results which are not selected in the
conversation itself.

R365_ConversationsEndPoints Link table for all endpoints which are used in the
conversation

R365_ConversationsEndpointsDetails Details of the conversation endpoint during the
conversation. (for example Webchat session Id or Twitter
username)

R365_EndPoints Endpoints names which are configured in the
ROGER365.io portal (including deleted endpoints).

R365_Transcripts Table with the actual send messages in the conversation.
For this to be filled, the option for transcript must be
enabled on the touchpoint in the ROGER365.io portal

Sys_Staging_JSON Table used for supporting the ELT process from the logic
apps. Should not be changed or used for reporting

R365_Settings Table for storing settings for the reporting solution

17

And these views:

View Description

vw_CallCenterCalls Best view for reporting on the call center calls.

vw_Conversations Best view for reporting on the conversations, this view
aggregates the tables to one reporting entity

vw_Hours View that can be used to join data for reporting based on
every hour.

Please keep in mind when creating PowerBI reports, the best wat is to create these reports on the

view because of maintenance.

18

Social messsaging schema

R365_Conversations
R365_EndPoints

R365_ConversationsCrmR

esults

R365_ConversationsEndP

oints

R365_ConversationsEndp

ointsDetails

R365_EndPoints

Id ConversationId

ConversationId

ConversationId

EndpointId

ConversationId

TouchpointId

EndpointId

19

Contact center schema

